LAA 278, pp.121-132, 1998 STRUCTURED PERTURBATIONS AND SYMMETRIC MATRICES
نویسنده
چکیده
For a given n by n matrix the ratio between the componentwise distance to the nearest singular matrix and the inverse of the optimal Bauer-Skeel condition number cannot be larger than (3 + 2 √ 2) · n. In this note a symmetric matrix is presented where the described ratio is equal to n for the choice of most interest in numerical computation, for relative perturbations of the individual matrix components. It is shown that a symmetric linear system can be arbitrarily ill-conditioned, while any symmetric and entrywise relative perturbation of the matrix of less than 100% does not produce a singular matrix. That means that the inverse of the condition number and the distance to the nearest ill-posed problem can be arbitrarily far apart. Finally we prove that restricting structured perturbations to symmetric (entrywise) perturbations cannot change the condition number by more than a factor (3 + 2 √ 2) · n.
منابع مشابه
Eigenvalues, Pseudospectrum and Structured Perturbations
We investigate the behavior of eigenvalues under structured perturbations. We show that for many common structures such as (complex) symmetric, Toeplitz, symmetric Toeplitz, circulant and others the structured condition number is equal to the unstructured condition number for normwise perturbations, and prove similar results for real perturbations. An exception are complex skewsymmetric matrice...
متن کاملStructured Perturbations Part I: Normwise Distances
In this paper we study the condition number of linear systems, the condition number of matrix inversion, and the distance to the nearest singular matrix, all problems with respect to normwise structured perturbations. The structures under investigation are symmetric, persymmetric, skewsymmetric, symmetric Toeplitz, general Toeplitz, circulant, Hankel, and persymmetric Hankel matrices (some resu...
متن کاملThe Componentwise Structured and Unstructured Backward Errors Can be Arbitrarily Far Apart
Given a linear system Ax = b and some vector x̃, the backward error characterizes the smallest relative perturbation of the input data such that x̃ is a solution of the perturbed system. If the input matrix has some structure such as being symmetric or Toeplitz, perturbations of the input matrix may be restricted to perturbations within the same class of structured matrices. For normwise perturba...
متن کاملStructured Hölder Condition Numbers for Multiple Eigenvalues
The sensitivity of a multiple eigenvalue of a matrix under perturbations can be measured by its Hölder condition number. Various extensions of this concept are considered. A meaningful notion of structured Hölder condition numbers is introduced and it is shown that many existing results on structured condition numbers for simple eigenvalues carry over to multiple eigenvalues. The structures inv...
متن کاملEla Structured Conditioning of Matrix Functions
STRUCTURED CONDITIONING OF MATRIX FUNCTIONS∗ PHILIP I. DAVIES† Abstract. The existing theory of conditioning for matrix functions f(X):Cn×n → Cn×n does not cater for structure in the matrix X. An extension of this theory is presented in which when X has structure, all perturbations of X are required to have the same structure. Two classes of structured matrices are considered, those comprising ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005